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History of Partial Least Squares

• PLS - a class of techniques for modeling relations between

blocks of observed variables by means of latent variables

• Herman Wold’66,’75 - NIPALS - to linearize models

nonlinear in the parameters

• Svante Wold et. al ’83 - NIPALS extended for the

overdetermined regression problems - PLS Regression

• Chemometrics - strong latent variable structure

• Math. Statistics - Stone & Brooks’90, Frank &

Friedman’93, Garthwaite’94, Breiman & Friedman’97, etc.
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• fMRI data

- McIntosh et. al ’96, Worsley’97, Nielsen et. al ’98

• EEG, ERP data

- Lobaugh et.al ’01

- Rosipal & Trejo’01 - nonlinear kernel PLS

• other applications

- classification of microarray gene expression profiles

(Nguyen & Rocke’02)

- drug design

(Bennett et. al ’02,’03)

- music data

(Saunders et. al ’04)
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Partial Least Squares

• data sets:

X (nobjects ×Nvariables)

Y (nobjects ×Mresponses)

– zero-mean

• bilinear decomposition:

X = TPT + E

Y = UQT + F

where:

T,U matrix of score vectors (LV, components)

P,Q matrix of loadings

E,F matrix of residuals (errors)
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• PLS - bilinear decomposition of X and Y maximizing

covariance between score vectors t = Xw and u = Yc

max|r|=|s|=1[cov(Xr,Ys)]2 = [cov(Xw,Yc)]2

= var(Xw)[corr(Xw,Yc)]2var(Yc)

= [cov(t,u)]2

• NIPALS algorithm finds the weights w, c :

1) w = XT u/(uT u) 4) c = YT t/(tT t)

2) ‖w‖ → 1 5) ‖c‖ → 1

3) t = Xw 6) u = Yc

7) go to 1)

• p = XT t/(tT t) ; q = YT u/(uT u)
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• instead of NIPALS we can solve an eigenproblem:

w ∝ XT u ∝ XT Yc ∝ XT YYT t ∝ XT YYT Xw

XT YYT Xw = λw

t = Xw
or

XXT YYT t = λt

u = YYT t

• sequential extraction of {ti}mi=1

X0 = X

ti = Xi−1wi , Xi = Xi−1 − tip
T
i = X−

∑i
j=1 tjp

T
j

• deflation schemes define different forms of PLS
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Forms of Partial Least Squares

• PLS1, PLS2: rank-one approximation of X,Y with a score

vector t and vector of loadings p,q

- X→ X− tpT ; Y → Y − tcT

- mutually orthogonal score vectors ti , i = 1, . . . , m

- 1st SVi+1 ≥ 2nd SVi → select one score vector at a time

• PLS Mode A: rank-one approximation of X,Y with score

vectors t,u and vector of loadings p,q

- X→ X− tpT ; Y → Y − uqT

- mutually orthogonal score vectors ti,ui , i = 1, . . . , m
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• PLS-SB: SVD of YT X = AΣBT

- YT X→ YT X− σabT

- mutually orthogonal weight vectors ai,bi

- generally not orthogonal score vectors ci = Xai ,di = Ybi

• SIMPLS :(de Jong’93)

- avoids deflation of X; i.e. finds weight vectors w̃i

such that T̃ = X0W̃

- SVD of XT
0 Y0 + constraint of mutually orthogonal t̃i

- sequence of SVD problems P̃⊥
i XT

0 Y0

P̃⊥
i an orthogonal projector onto P̃i = [p̃1, . . . , p̃i]

where p̃i = XT
0 t̃i/(̃t

T
i t̃i) are loadings vectors

- same as PLS1 but differs for PLS2

• Hinkel & Rayens’98-00; Frank & Friedman’93:

- constraint maximization of covariance



Overview and Some Aspects of PLS Bohinj, February 2005

CCA, PLS, and PCA ⇀↽ CR

• PLS:

max
|r|=|s|=1

[cov(Xr,Ys)]2 = max
|r|=|s|=1

var(Xr)[corr(Xr,Ys)]2var(Ys)

• CCA:

max
|r|=|s|=1

[corr(Xr,Ys)]2

• PCA:

max
|r|=1

[var(Xr)]
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Canonical Ridge Analysis - CCA ⇀↽ PLS

([1− γX ]XT X + γXI)−1XT Y([1− γY ]YT Y + γY I)−1YT Xw = λw

• CCA: γX = 0, γY = 0

• PLS: γX = 1, γY = 1

• Orthonormalized PLS: γX = 1, γY = 0 or γX = 0, γY = 1

• Ridge Regression, Regularized FDA or CCA:

γX ∈ (0, 1), Y ∈ R
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PLS Regression (PLS1, PLS2)

• assume: (i) T are good predictors of Y

(ii) the inner loop relation U = T + H ; i.e.

Y is a linear function of T

H matrix of residuals (errors)

• linear PLS regression model:

Y = TCT + F∗ = XB + F∗, F∗ matrix of residuals (errors)

• T = XW∗ = XW(PT W)−1

• Ŷ = XW(PT W)−1CT = XB
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• Ŷ = XW(PT W)−1CT = XB

• using the existing relations among t,u, c,w:

B = XT U(TT XXT U)−1TT Y

• train data:

Ŷ = XXT U(TT XXT U)−1TT Y = TTT Y = TCT

single output: ŷ(x) = c1t1(x) + c2t2(x) + . . . + cmtm(x)

• test data:

Ŷt = XtX
T U(TT XXT U)−1TT Y = TtC

T
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PLS1 ⇀↽ Lanczos Method

• b
(m)
PLS = R(m)[(R(m))T XT XR(m)]−1(R(m))T XT y

• R(m) - a matrix with orthonormal columns spanning Krylov

space K(m) = span{XT y, (XTX)XT y, . . . , (XTX)m−1XT y}

W(m) = [w1,w2, . . . ,wm] is such a candidate

• Z(m) = (R(m))T XT XR(m) is a tridiagonal matrix

• Lanczos method approximate extremal eigenvalues of XT X

by constructing a sequence of Z(m); columns of R(m) are

given by a Gram-Schimdt orthonormalization of the first m

columns of K(m)
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PLS1 ⇀↽ Conjugate Gradients (CG)

• CG - solves a system of linear equations Af = g by

minimization of the quadratic form 1
2 f

TAf − gT f

(A positive semidefinite)

• for any f0, the sequence fj, iterates to the solution

f = A−g in p = rank(A) steps

• the connection between CG and Lanczos method known

(Hestens & Stiefel’52; Lanczos’50)

• if A = XT X; g = XT y & f0 = 0 then b
(m)
PLS

⇀↽ fm
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Kernel PLS Regression

• linear PLS regression in a feature space F

• kernel trick: K = ΦΦT

where Φ is the (n× L) matrix of the mapped input data:

Φ : x→ Φ(x) ∈ F

• nonlinear kernel-based PLS:

XXT YYT t = λt⇒ KYYT t = λt

u = YYT t

or

iterative kernel-based NIPALS algorithm
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”The Peculiar Shrinkage Properties” of PLS1

(Frank & Friedman’93, Butler & Denham’00, Lingjaerde &

Christophersen’00, Krämer’04)

• assume: y = Xb + ε

y an (n× 1) response vector

X an (n×N) design matrix

b an unknown (N × 1) parameter vector

ε an (n× 1) vector of noise, iid elements ∼ N (0, σ2)

y,X centered, i.e. 1T
nY = 0 and 1T

nX = 0N ,

rank(X) = p ≤ min(n− 1, N)

svd(X) = UDVT ; δi - singular values

XT X = VΛVT =
∑p

i=1 λiviv
T
i , λi = δ2

i
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Ordinary Least Squares (OLS)

• minb‖y −Xb‖2 =⇒ b̂OLS = (XT X)−XT Y = VΛ−1/2UT Y

b̂OLS =
∑p

i=1 λ
−1/2
i (uT

i y)vi =
∑p

i=1 b̂i

• b̂OLS belongs to the class of linear estimators ẑ = Ly

E(ẑ) = LXz

var(ẑ) = σ2trace(LLT )

• E(b̂OLS) = b

var(b̂OLS) = E[(b̂OLS − b)T (b̂OLS − b)] = σ2trace(XT X)− =

= σ2
∑m

i=1
1
λi

• MSE(ẑ) = (E(ẑ)− z)T (E(ẑ)− z) + E[(ẑ−E(ẑ))T (ẑ−E(ẑ))]

≡ bias2(ẑ) + var(ẑ)

• if ‖ẑ1‖2 ≤ ‖ẑ2‖2 ⇒ var(ẑ1) ≤ var(ẑ2)
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Shrinkage Estimators

• b̂shr =
∑p

i=1 f(λi)λ
−1/2
i (uT

i y)vi =
∑p

i=1 f(λi)b̂i

b̂i−the component of b̂OLS along vi

• linear shrinkage estimators

MSE(b̂shr) =

p
∑

i=1

(f(λi)− 1)2(vT
i b)2 + σ2

p
∑

i=1

f(λi)
2/λi
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(Generalized) Ridge Regression

f(λi) =
λi

λi + γi
, γi − regularization term along vi

Principal Components Regression (PCR)

f(λi) =







1 : principal component along vi included

0 : otherwise
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PLS Regression (PLS1)

• b̂
(m)
PLS =

∑p
i=1 f (m)(λi)b̂i

• b̂
(m)
PLS is not a linear estimator

• PLS shrinks:

‖b̂
(1)
PLS‖2 ≤ ‖b̂

(2)
PLS‖2 ≤ . . . ≤ ‖b̂

(p)
PLS‖2 = ‖b̂OLS‖2

• PLS fits closer to OLS then PCR:

R2(ŷOLS , ŷ
(m)
PLS) ≥ R2(ŷOLS, ŷ

(m)
PCR)

(R2(., .) - squared correlation)
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PLS Shrinkage Factors f (m)(λi)

•

f (m)(λi) = 1−
m
∏

j=1

(1−
λi

µ
(m)
j

) , i = 1, . . . , p

µ
(m)
1 ≥ . . . ≥ µ

(m)
m the eigenvalues (Ritz values) of

(R(m))T XT XR(m)

• R(m) - a matrix with orthonormal columns spanning Krylov

space K(m) = span{XT y, (XTX)XT y, . . . , (XTX)m−1XT y}

W(m) = [w1,w2, . . . ,wm] is such a candidate
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Fundamental Properties of f (m)(λi)

• f (m)(λi) depends non-linearly on y

• f (m)(λi) > 1 may occur

• f (m)(λp) ≤ 1 for all m

• f (m)(λ1) ≥ 1 for all m = 1, 3, 5, . . .

• f (m)(λ1) ≤ 1 for all m = 2, 4, 6, . . .

• for m < M (M - number of distinct eigenvalues of XT X)

(i) at least (m + 1)/2 shrink. factors satisfy f (m)(λi) ≥ 1

(ii) at least (m/2) + 1 shrink. factors satisfy f (m)(λi) ≤ 1

(iii) there exist an i ≥ m such that f (m)(λi) ≥ 1
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Multiple Multivariate PLS Regression

• prediction when a high degree of correlation among the

variables in both the predictor and response spaces exist

• PLS2 is inherently designed to deal with several response

variables, however, almost none theoretical understanding

of the properties of such model exist

• the curds & whey procedure (C&W) (Breiman &

Friedman’97): the use of CCA between predictors and

responses to decorrelate response variables ⇒ univariate

(shrinkage) regression on decorrelated responses

• experimental evidence exists that C&W in the PLS2

framework may improve prediction accuracies

(Xu & Massart’03)
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Selection of Variables (PLS1) - CovProc

• t = Xw; explained variance (fit) associated with t is

r2 = (yT t)2/(tT t)

• let X = [X1,X2] and weight vector w = [w1,w2]:

(yT t)2 = ((yTX1w1) + (yT X2w2))

tT t = wT
1 XT

1 X1w1 + 2wT
2 XT

2 X1w1 + wT
2 XT

2 X2w2

• problem: large (wT
2 XT

2 X2w2) can spoil good fit given by

large (yT X1w1); e.g large amount of small components in

w

• (i) compute w using X

(ii) sort xi using abs(w)

(iii) compute r2 and/or cross-validate sub-models

(iv) compute new PLS model (w, t, . . . ) using selected xi
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PLS Discrimination/Classification

Y =













1n1
0n1

. . . 0n1

0n2
1n2

. . . 0n2

.

.

.
.
.
.

. . . 1ng−1

0ng 0ng . . . 0ng













Orthonormalized PLS

Ỹ = Y(YT Y)−1/2

ỸT Ỹ = I
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Orthonormalized PLS vs. CCA, Fisher’s LDA

• orthonormalized PLS

max|r|=|s|=1[cov(Xr, Ỹs)]2 = var(Xw)[corr(Xw, Ỹc)]2

XT ỸỸT Xw = λw

XT Y(YT Y)−1YT Xw = λw

Hw = λw

• CCA, Fisher’s LDA

max|r|=|s|=1[corr(Xr,Ys)]2 = [corr(Xa,Yb)]2

(XT X)−1XT Y(YTY)−1YT Xa = λa

E−1Ha = λ
1−λa
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Canonical Ridge Analysis - CCA ⇀↽ PLS

([1− γX ]XT X + γXI)−1XT Y([1− γY ]YT Y + γXI)−1YT Xw = λw

• CCA: γX = 0, γY = 0

• PLS: γX = 1, γY = 1

• Orthonormalized PLS: γX = 1, γY = 0 or γX = 0, γY = 1

• Ridge Regression, Regularized FDA or CCA:

γX ∈ (0, 1), Y ∈ R
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Kernel PLS Discrimination

• linear PLS discrimination in a feature space F

• nonlinear kernel-based orthonormalized PLS:

KY(YT Y)−1YT t = KỸỸT t = λt

Ỹ = Y(YT Y)−1/2

Kernel PLS-SVC Classification

• orthonormalized kernel PLS + SVC (KPLS-SVC)

• orthonormalized kernel PLS can be combined with other

existing classifiers (e.g. LDA, logistic regression)
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Kernel PLS Pseudocode (Y ⊆ R)

1. kernel PLS score vectors extraction

compute K - centered Gram matrix

set Kres = K, m - the number of score vectors

for i = 1 to m

ti = KresY

‖ti‖ → 1

ui = Y(YT ti)

Kres ← Kres − ti(t
T
i Kres)

Y ← Y − ti(t
T
i Y)

end

2. projection of test samples

Tt = KtU(TT KU)−1 ; (Kt - test set Gram matrix)
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Experiments - Classification

• 13 benchmark data sets of two-class classification problem

http://www.first.gmd.de/~raetsch

• vowel sounds data set - multi-class problem (11 classes)

• classification of finger movement periods from

non-movement periods based on electroencephalograms

(EEG)

• cognitive fatigue estimation
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Banana data set
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Data Set KFD C-SVC KPLS-SVC

Banana 10.8±0.5 11.5±0.5 10.5±0.4

B.Cancer 25.8±4.6 26.0±4.7 25.1±4.5∗

Diabetes 23.2±1.6 23.5±1.7 23.0±1.7

German 23.7±2.2 23.6±2.1 23.5±1.6

Heart 16.1±3.4 16.0±3.3 16.5±3.6

Image 4.76±0.58 2.96±0.60 3.03±0.61

Ringnorm 1.49±0.12 1.66±0.12 1.43±0.10

F.Solar 33.2±1.7 32.4±1.8 32.4±1.8

Splice 10.5±0.6 10.9±0.7 10.9±0.8

Thyroid 4.20±2.07 4.80±2.19 4.39±2.10

Titanic 23.2±2.06 22.4±1.0 22.4±1.1∗

Twonorm 2.61±0.15 2.96±0.23 2.34±0.11

Waveform 9.86±0.44 9.88±0.43 9.58±0.36
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Vowel sounds data set: 11 classes, 10 predictors

−0.1 −0.05 0 0.05 0.1 0.15
−0.12

−0.07

−0.02

0.03

0.08

First kernel PLS score vector  − t
1
 

Se
co

nd
 k

er
ne

l P
LS

 s
co

re
 v

ec
to

r  
− 

t
2



Overview and Some Aspects of PLS Bohinj, February 2005

Vowel sounds data set: 11 classes, 10 predictors
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Method Training Error Testing Error

LDA 0.32 0.56

SVC (linear) - 1vs1 0.19 0.51

KPLS-SVC (linear) - 1vs1 0.16 0.47

FDA/MARS (df=2) 0.02 0.42

FDA/MARS (df=6,red. dim.) 0.13 0.39

SVC (gauss) - 1vs1 0.01 0.37

KPLS-SVC (gauss) - 1vs1 0.01 0.35

SVC (gauss, w ≤ 5) - 1vs1 0.002 0.29

KPLS-SVC (gauss, w ≤ 5) - 1vs1 0.002 0.33
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Finger movement periods vs. non-movement periods
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PLS-derived Spatio-temporal Filter - 01/09/2003
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PLS-derived Spatio-temporal Filter

(370ms after button press)

11/14/2002 01/09/2003
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Kernel PLS Estimation of ERP - Regression

• Generated data:

Event-Related Potentials (N1,P2,N2,P3)

+

relax state spatially distributed EEG signal + white

Gaussian noise

• Real ERP data:

ERPs recorded in an experiment of cognitive fatigue
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Generation of ERPs using BESA software
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Smoothing Splines

• minf (
1

n

n
∑

i=1

(yi − f(xi))
2 + λ

∫ b

a

(f (2)(x))2dx λ > 0⇒

natural cubic splines with knots at xi ; i = 1, . . . , n

• Complete basis → shrink the coefficients toward smoothing

Wavelet Smoothing

• Complete orthonormal basis → shrink and select the

coefficients toward a sparse representation

• Wavelet basis is localized in time and frequency
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Correlated Noise Estimate

• measured signali = ERPi + (on-going EEG + measur.

noise)i

• We compute cov(measured signali - avg(measured signal))



Overview and Some Aspects of PLS Bohinj, February 2005

Fz Cz Pz F3 C3 P3 F4 C4 P4 T7 T8 P7 P8 F7 F8 O1 O2 Fp1 Fp2
0

0.2

0.4

0.6

0.8

1

NR
M

SE

Fz Cz Pz F3 C3 P3 F4 C4 P4 T7 T8 P7 P8 F7 F8 O1 O2 Fp1 Fp2
0.6

0.7

0.8

0.9

1

SR
C

Channels

LKPLS
WS
avgERP
avgLKPLS
d
KPLS

 

Results on noisy event related potentials (ERPs)–20 different trials were used. Averaged SNR over the trials

and electrodes was equal to 1.3dB (min=−7.1dB, max=6.4dB) and 512 samples were used. NRMSE -

normalized root mean squared error; SRC - Spearman’s rank correlation coefficient.
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Results on ERPs recorded on a cognitive fatigue experiment
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Results on ERPs recorded on a cognitive fatigue experiment
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Sample of two ERPs trials recorded on a cognitive fatigue experiment
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Conclusions

• PLS Regression - valuable method for data with strong

latent structure

• PLS discrimination - useful method for dimensionality

reduction, visualization

• PLS - code is simple - do no forget to try it when you look

at new data ;-)
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